Curve name | $X_{200c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{200}$ | |||||||||
Curves that $X_{200c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{200c}$ | ||||||||||
Curves that minimally cover $X_{200c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} + 110592t^{14} - 1741824t^{12} + 3290112t^{10} - 2885760t^{8} + 822528t^{6} - 108864t^{4} + 1728t^{2} - 108\] \[B(t) = -1769472t^{24} + 10616832t^{22} + 204374016t^{20} - 885620736t^{18} + 2514530304t^{16} - 3459760128t^{14} + 2284498944t^{12} - 864940032t^{10} + 157158144t^{8} - 13837824t^{6} + 798336t^{4} + 10368t^{2} - 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 6657x - 71775$, with conductor $1344$ | |||||||||
Generic density of odd order reductions | $271/2688$ |