| Curve name | 
$X_{200d}$ | 
| Index | 
$96$ | 
| Level | 
$8$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 3 & 6 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 4 & 1 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{200}$ | 
| Curves that $X_{200d}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{200d}$ | 
 | 
| Curves that minimally cover $X_{200d}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27648t^{16} + 110592t^{14} - 1741824t^{12} + 3290112t^{10} - 
2885760t^{8} + 822528t^{6} - 108864t^{4} + 1728t^{2} - 108\]
\[B(t) = 1769472t^{24} - 10616832t^{22} - 204374016t^{20} + 885620736t^{18} - 
2514530304t^{16} + 3459760128t^{14} - 2284498944t^{12} + 864940032t^{10} - 
157158144t^{8} + 13837824t^{6} - 798336t^{4} - 10368t^{2} + 432\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 + x^2 - 6657x + 71775$, with conductor $1344$ | 
| Generic density of odd order reductions | 
$271/2688$ |