Curve name | $X_{202f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{202}$ | |||||||||
Curves that $X_{202f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{202f}$ | ||||||||||
Curves that minimally cover $X_{202f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} - 3207168t^{14} - 5059584t^{12} + 4119552t^{10} - 1226880t^{8} + 1029888t^{6} - 316224t^{4} - 50112t^{2} - 108\] \[B(t) = 1769472t^{24} - 456523776t^{22} - 5109350400t^{20} - 563576832t^{18} + 606818304t^{16} + 3849928704t^{14} - 3232051200t^{12} + 962482176t^{10} + 37926144t^{8} - 8805888t^{6} - 19958400t^{4} - 445824t^{2} + 432\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 58497x - 5412897$, with conductor $1344$ | |||||||||
Generic density of odd order reductions | $271/2688$ |