Curve name | $X_{202}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{78}$ | |||||||||
Curves that $X_{202}$ minimally covers | $X_{78}$, $X_{85}$, $X_{102}$ | |||||||||
Curves that minimally cover $X_{202}$ | $X_{471}$, $X_{472}$, $X_{473}$, $X_{474}$, $X_{202a}$, $X_{202b}$, $X_{202c}$, $X_{202d}$, $X_{202e}$, $X_{202f}$, $X_{202g}$, $X_{202h}$ | |||||||||
Curves that minimally cover $X_{202}$ and have infinitely many rational points. | $X_{202a}$, $X_{202b}$, $X_{202c}$, $X_{202d}$, $X_{202e}$, $X_{202f}$, $X_{202g}$, $X_{202h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{202}) = \mathbb{Q}(f_{202}), f_{78} = \frac{f_{202}^{2} - \frac{1}{2}}{f_{202}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 8226x + 286474$, with conductor $126$ | |||||||||
Generic density of odd order reductions | $193/1792$ |