The modular curve $X_{203g}$

Curve name $X_{203g}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $12$ $X_{25}$
Meaning/Special name
Chosen covering $X_{203}$
Curves that $X_{203g}$ minimally covers
Curves that minimally cover $X_{203g}$
Curves that minimally cover $X_{203g}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} - 18554258718720t^{22} - 44762149158912t^{20} - 62214748766208t^{18} - 41252422680576t^{16} - 13634843443200t^{14} - 2457782452224t^{12} - 213044428800t^{10} - 10071392256t^{8} - 237330432t^{6} - 2668032t^{4} - 17280t^{2} - 108\] \[B(t) = 7782220156096217088t^{36} + 29183325585360814080t^{34} - 16415620641765457920t^{32} - 163183428898142552064t^{30} - 271610123201877639168t^{28} - 244940439527287160832t^{26} - 142280943195981348864t^{24} - 54465625696814235648t^{22} - 13305326650238435328t^{20} - 2060618114827026432t^{18} - 207895728909975552t^{16} - 13297271898636288t^{14} - 542758724960256t^{12} - 14599587889152t^{10} - 252956639232t^{8} - 2374631424t^{6} - 3732480t^{4} + 103680t^{2} + 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 + x^2 - 32072449x - 69918983329$, with conductor $55488$
Generic density of odd order reductions $109/896$

Back to the 2-adic image homepage.