The modular curve $X_{203h}$

Curve name $X_{203h}$
Index $96$
Level $8$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $6$ $X_{8}$
$4$ $12$ $X_{25}$
Meaning/Special name
Chosen covering $X_{203}$
Curves that $X_{203h}$ minimally covers
Curves that minimally cover $X_{203h}$
Curves that minimally cover $X_{203h}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7421703487488t^{24} - 18554258718720t^{22} - 44762149158912t^{20} - 62214748766208t^{18} - 41252422680576t^{16} - 13634843443200t^{14} - 2457782452224t^{12} - 213044428800t^{10} - 10071392256t^{8} - 237330432t^{6} - 2668032t^{4} - 17280t^{2} - 108\] \[B(t) = -7782220156096217088t^{36} - 29183325585360814080t^{34} + 16415620641765457920t^{32} + 163183428898142552064t^{30} + 271610123201877639168t^{28} + 244940439527287160832t^{26} + 142280943195981348864t^{24} + 54465625696814235648t^{22} + 13305326650238435328t^{20} + 2060618114827026432t^{18} + 207895728909975552t^{16} + 13297271898636288t^{14} + 542758724960256t^{12} + 14599587889152t^{10} + 252956639232t^{8} + 2374631424t^{6} + 3732480t^{4} - 103680t^{2} - 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - x^2 - 32072449x + 69918983329$, with conductor $55488$
Generic density of odd order reductions $109/896$

Back to the 2-adic image homepage.