Curve name | $X_{204c}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 2 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{204}$ | |||||||||
Curves that $X_{204c}$ minimally covers | ||||||||||
Curves that minimally cover $X_{204c}$ | ||||||||||
Curves that minimally cover $X_{204c}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7884t^{16} - 100224t^{15} - 680832t^{14} - 2225664t^{13} - 7402752t^{12} - 13547520t^{11} - 14321664t^{10} - 24993792t^{9} - 74041344t^{8} + 99975168t^{7} - 229146624t^{6} + 867041280t^{5} - 1895104512t^{4} + 2279079936t^{3} - 2788687872t^{2} + 1642070016t - 516685824\] \[B(t) = 257040t^{24} + 5453568t^{23} + 48418560t^{22} + 308689920t^{21} + 1344397824t^{20} + 4317401088t^{19} + 11010650112t^{18} + 27196342272t^{17} + 40513499136t^{16} + 66762178560t^{15} + 51969392640t^{14} + 34780741632t^{13} + 401266704384t^{12} - 139122966528t^{11} + 831510282240t^{10} - 4272779427840t^{9} + 10371455778816t^{8} - 27849054486528t^{7} + 45099622858752t^{6} - 70736299425792t^{5} + 88106455793664t^{4} - 80921210388480t^{3} + 50770539970560t^{2} - 22873922076672t + 4312415600640\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 97x + 385$, with conductor $192$ | |||||||||
Generic density of odd order reductions | $109/896$ |