Curve name | $X_{204}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 4 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{62}$ | |||||||||
Curves that $X_{204}$ minimally covers | $X_{62}$, $X_{87}$, $X_{98}$ | |||||||||
Curves that minimally cover $X_{204}$ | $X_{448}$, $X_{455}$, $X_{456}$, $X_{464}$, $X_{204a}$, $X_{204b}$, $X_{204c}$, $X_{204d}$, $X_{204e}$, $X_{204f}$, $X_{204g}$, $X_{204h}$ | |||||||||
Curves that minimally cover $X_{204}$ and have infinitely many rational points. | $X_{204a}$, $X_{204b}$, $X_{204c}$, $X_{204d}$, $X_{204e}$, $X_{204f}$, $X_{204g}$, $X_{204h}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{204}) = \mathbb{Q}(f_{204}), f_{62} = \frac{2f_{204}^{2} + 8}{f_{204}^{2} + 4f_{204} - 4}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 608x - 5712$, with conductor $600$ | |||||||||
Generic density of odd order reductions | $635/5376$ |