Curve name | $X_{204f}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 2 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 4 & 7 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{204}$ | |||||||||
Curves that $X_{204f}$ minimally covers | ||||||||||
Curves that minimally cover $X_{204f}$ | ||||||||||
Curves that minimally cover $X_{204f}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -1971t^{16} - 25056t^{15} - 170208t^{14} - 556416t^{13} - 1850688t^{12} - 3386880t^{11} - 3580416t^{10} - 6248448t^{9} - 18510336t^{8} + 24993792t^{7} - 57286656t^{6} + 216760320t^{5} - 473776128t^{4} + 569769984t^{3} - 697171968t^{2} + 410517504t - 129171456\] \[B(t) = -32130t^{24} - 681696t^{23} - 6052320t^{22} - 38586240t^{21} - 168049728t^{20} - 539675136t^{19} - 1376331264t^{18} - 3399542784t^{17} - 5064187392t^{16} - 8345272320t^{15} - 6496174080t^{14} - 4347592704t^{13} - 50158338048t^{12} + 17390370816t^{11} - 103938785280t^{10} + 534097428480t^{9} - 1296431972352t^{8} + 3481131810816t^{7} - 5637452857344t^{6} + 8842037428224t^{5} - 11013306974208t^{4} + 10115151298560t^{3} - 6346317496320t^{2} + 2859240259584t - 539051950080\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 24x - 36$, with conductor $24$ | |||||||||
Generic density of odd order reductions | $215/2688$ |