Curve name | $X_{205h}$ | |||||||||
Index | $96$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 7 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{205}$ | |||||||||
Curves that $X_{205h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{205h}$ | ||||||||||
Curves that minimally cover $X_{205h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 1620t^{12} - 3618t^{8} + 1620t^{4} - 27\] \[B(t) = -54t^{24} - 6804t^{20} + 56214t^{16} - 95256t^{12} + 56214t^{8} - 6804t^{4} - 54\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 - 15670x - 12265705$, with conductor $1230$ | |||||||||
Generic density of odd order reductions | $19/336$ |