Curve name | $X_{205}$ | |||||||||
Index | $48$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 1 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{85}$ | |||||||||
Curves that $X_{205}$ minimally covers | $X_{85}$, $X_{86}$, $X_{92}$ | |||||||||
Curves that minimally cover $X_{205}$ | $X_{444}$, $X_{453}$, $X_{476}$, $X_{478}$, $X_{205a}$, $X_{205b}$, $X_{205c}$, $X_{205d}$, $X_{205e}$, $X_{205f}$, $X_{205g}$, $X_{205h}$, $X_{205i}$, $X_{205j}$, $X_{205k}$, $X_{205l}$ | |||||||||
Curves that minimally cover $X_{205}$ and have infinitely many rational points. | $X_{205a}$, $X_{205b}$, $X_{205c}$, $X_{205d}$, $X_{205e}$, $X_{205f}$, $X_{205g}$, $X_{205h}$, $X_{205i}$, $X_{205j}$, $X_{205k}$, $X_{205l}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{205}) = \mathbb{Q}(f_{205}), f_{85} = \frac{f_{205}^{2} + 1}{f_{205}}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 27540x - 2745500$, with conductor $1530$ | |||||||||
Generic density of odd order reductions | $25/224$ |