Curve name | $X_{207n}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{207}$ | ||||||||||||
Curves that $X_{207n}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{207n}$ | |||||||||||||
Curves that minimally cover $X_{207n}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} - 864t^{15} + 13824t^{14} + 628992t^{13} + 7402752t^{12} + 36771840t^{11} + 30965760t^{10} - 514473984t^{9} - 2477924352t^{8} - 4115791872t^{7} + 1981808640t^{6} + 18827182080t^{5} + 30321672192t^{4} + 20610809856t^{3} + 3623878656t^{2} - 1811939328t - 452984832\] \[B(t) = 54t^{24} + 2592t^{23} + 165888t^{22} + 5550336t^{21} + 88687872t^{20} + 635185152t^{19} - 371589120t^{18} - 45072433152t^{17} - 383285551104t^{16} - 1506238267392t^{15} - 1640258076672t^{14} + 11447323066368t^{13} + 57189844647936t^{12} + 91578584530944t^{11} - 104976516907008t^{10} - 771193992904704t^{9} - 1569937617321984t^{8} - 1476933489524736t^{7} - 97409858273280t^{6} + 1332079811887104t^{5} + 1487935585124352t^{4} + 744953487556608t^{3} + 178120883699712t^{2} + 22265110462464t + 3710851743744\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + 1270x - 789048$, with conductor $210$ | ||||||||||||
Generic density of odd order reductions | $1/28$ |