Curve name | $X_{207}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{92}$ | ||||||||||||
Curves that $X_{207}$ minimally covers | $X_{92}$, $X_{120}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{207}$ | $X_{476}$, $X_{478}$, $X_{479}$, $X_{487}$, $X_{521}$, $X_{527}$, $X_{529}$, $X_{531}$, $X_{207a}$, $X_{207b}$, $X_{207c}$, $X_{207d}$, $X_{207e}$, $X_{207f}$, $X_{207g}$, $X_{207h}$, $X_{207i}$, $X_{207j}$, $X_{207k}$, $X_{207l}$, $X_{207m}$, $X_{207n}$ | ||||||||||||
Curves that minimally cover $X_{207}$ and have infinitely many rational points. | $X_{207a}$, $X_{207b}$, $X_{207c}$, $X_{207d}$, $X_{207e}$, $X_{207f}$, $X_{207g}$, $X_{207h}$, $X_{207i}$, $X_{207j}$, $X_{207k}$, $X_{207l}$, $X_{207m}$, $X_{207n}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{207}) = \mathbb{Q}(f_{207}), f_{92} = \frac{f_{207}^{2} - 8}{f_{207}^{2} + 8f_{207} + 8}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 153667x + 1050376556$, with conductor $25410$ | ||||||||||||
Generic density of odd order reductions | $17/168$ |