Curve name | $X_{210a}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 2 \\ 14 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 2 \\ 14 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 6 \\ 10 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{210}$ | ||||||||||||
Curves that $X_{210a}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{210a}$ | |||||||||||||
Curves that minimally cover $X_{210a}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 1728t^{8} - 27648\] \[B(t) = 432t^{24} + 10368t^{16} - 165888t^{8} - 1769472\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 364x - 2640$, with conductor $1088$ | ||||||||||||
Generic density of odd order reductions | $13411/86016$ |