Curve name | $X_{24}$ | ||||||
Index | $12$ | ||||||
Level | $4$ | ||||||
Genus | $0$ | ||||||
Does the subgroup contain $-I$? | Yes | ||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 2 \\ 2 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||
Images in lower levels |
|
||||||
Meaning/Special name | |||||||
Chosen covering | $X_{8}$ | ||||||
Curves that $X_{24}$ minimally covers | $X_{8}$, $X_{9}$, $X_{11}$ | ||||||
Curves that minimally cover $X_{24}$ | $X_{58}$, $X_{59}$, $X_{61}$, $X_{66}$, $X_{67}$, $X_{132}$, $X_{141}$, $X_{24a}$, $X_{24b}$, $X_{24c}$, $X_{24d}$, $X_{24e}$, $X_{24f}$, $X_{24g}$, $X_{24h}$ | ||||||
Curves that minimally cover $X_{24}$ and have infinitely many rational points. | $X_{58}$, $X_{61}$, $X_{66}$, $X_{67}$, $X_{24a}$, $X_{24b}$, $X_{24c}$, $X_{24d}$, $X_{24e}$, $X_{24f}$, $X_{24g}$, $X_{24h}$ | ||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{24}) = \mathbb{Q}(f_{24}), f_{8} = -2f_{24}^{2} - 1\] | ||||||
Info about rational points | None | ||||||
Comments on finding rational points | None | ||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 240x - 469$, with conductor $1845$ | ||||||
Generic density of odd order reductions | $9/56$ |