Curve name | $X_{211j}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{211}$ | ||||||||||||
Curves that $X_{211j}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{211j}$ | |||||||||||||
Curves that minimally cover $X_{211j}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 51840t^{15} - 929664t^{14} - 4354560t^{13} - 7900416t^{12} + 5806080t^{11} + 21510144t^{10} + 89579520t^{9} + 192706560t^{8} - 358318080t^{7} + 344162304t^{6} - 371589120t^{5} - 2022506496t^{4} + 4459069440t^{3} - 3807903744t^{2} + 849346560t - 7077888\] \[B(t) = 432t^{24} - 435456t^{23} - 28760832t^{22} - 405844992t^{21} - 2532321792t^{20} - 6709506048t^{19} - 5867237376t^{18} + 19313344512t^{17} + 100489973760t^{16} + 161195360256t^{15} + 130682585088t^{14} + 9809952768t^{13} - 2147438297088t^{12} - 39239811072t^{11} + 2090921361408t^{10} - 10316503056384t^{9} + 25725433282560t^{8} - 19776864780288t^{7} - 24032204292096t^{6} + 109928547090432t^{5} - 165958240960512t^{4} + 106389829582848t^{3} - 30157918175232t^{2} + 1826434842624t + 7247757312\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 122931201x - 524574745599$, with conductor $6720$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |