The modular curve $X_{211p}$

Curve name $X_{211p}$
Index $96$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 0 & 3 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
$8$ $48$ $X_{85p}$
Meaning/Special name
Chosen covering $X_{211}$
Curves that $X_{211p}$ minimally covers
Curves that minimally cover $X_{211p}$
Curves that minimally cover $X_{211p}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{22} - 51840t^{21} - 928800t^{20} - 3939840t^{19} - 464832t^{18} + 39813120t^{17} + 69838848t^{16} - 26542080t^{15} - 105781248t^{14} - 982056960t^{13} - 853327872t^{12} + 3928227840t^{11} - 1692499968t^{10} + 1698693120t^{9} + 17878745088t^{8} - 40768634880t^{7} - 1903951872t^{6} + 64550338560t^{5} - 60869836800t^{4} + 13589544960t^{3} - 113246208t^{2}\] \[B(t) = -432t^{33} + 435456t^{32} + 28766016t^{31} + 400619520t^{30} + 2187171072t^{29} + 1860268032t^{28} - 23140076544t^{27} - 80374726656t^{26} - 51186069504t^{25} + 366646984704t^{24} + 1194755899392t^{23} + 568085446656t^{22} - 1483392614400t^{21} - 6344363999232t^{20} - 27701586690048t^{19} + 19691250647040t^{18} + 110806346760192t^{17} - 101509823987712t^{16} + 94937127321600t^{15} + 145429874343936t^{14} - 1223430040977408t^{13} + 1501786049347584t^{12} + 838632562753536t^{11} - 5267438086127616t^{10} + 6066032225550336t^{9} + 1950632411922432t^{8} - 9173660375973888t^{7} + 6721280220856320t^{6} - 1930454655565824t^{5} + 116891829927936t^{4} + 463856467968t^{3}\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 1106380812x + 14164624511984$, with conductor $20160$
Generic density of odd order reductions $11/112$

Back to the 2-adic image homepage.