Curve name | $X_{211t}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 9 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 11 & 11 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 15 & 0 \\ 8 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{211}$ | ||||||||||||
Curves that $X_{211t}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{211t}$ | |||||||||||||
Curves that minimally cover $X_{211t}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{16} - 51840t^{15} - 929664t^{14} - 4354560t^{13} - 7900416t^{12} + 5806080t^{11} + 21510144t^{10} + 89579520t^{9} + 192706560t^{8} - 358318080t^{7} + 344162304t^{6} - 371589120t^{5} - 2022506496t^{4} + 4459069440t^{3} - 3807903744t^{2} + 849346560t - 7077888\] \[B(t) = -432t^{24} + 435456t^{23} + 28760832t^{22} + 405844992t^{21} + 2532321792t^{20} + 6709506048t^{19} + 5867237376t^{18} - 19313344512t^{17} - 100489973760t^{16} - 161195360256t^{15} - 130682585088t^{14} - 9809952768t^{13} + 2147438297088t^{12} + 39239811072t^{11} - 2090921361408t^{10} + 10316503056384t^{9} - 25725433282560t^{8} + 19776864780288t^{7} + 24032204292096t^{6} - 109928547090432t^{5} + 165958240960512t^{4} - 106389829582848t^{3} + 30157918175232t^{2} - 1826434842624t - 7247757312\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 122931201x + 524574745599$, with conductor $6720$ | ||||||||||||
Generic density of odd order reductions | $81/896$ |