Curve name | X215g | ||||||||||||
Index | 96 | ||||||||||||
Level | 16 | ||||||||||||
Genus | 0 | ||||||||||||
Does the subgroup contain −I? | No | ||||||||||||
Generating matrices | [1085],[71407],[7081],[5001] | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | X215 | ||||||||||||
Curves that X215g minimally covers | |||||||||||||
Curves that minimally cover X215g | |||||||||||||
Curves that minimally cover X215g and have infinitely many rational points. | |||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−27t32+1296t24−27648t16+331776t8−1769472 B(t)=54t48−3888t40+82944t32−21233664t16+254803968t8−905969664 | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy+y=x3−x2−1130x−14128, with conductor 225 | ||||||||||||
Generic density of odd order reductions | 299/2688 |