Curve name | $X_{215}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 14 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{96}$ | ||||||||||||
Curves that $X_{215}$ minimally covers | $X_{96}$, $X_{119}$, $X_{120}$ | ||||||||||||
Curves that minimally cover $X_{215}$ | $X_{469}$, $X_{470}$, $X_{483}$, $X_{485}$, $X_{215a}$, $X_{215b}$, $X_{215c}$, $X_{215d}$, $X_{215e}$, $X_{215f}$, $X_{215g}$, $X_{215h}$, $X_{215i}$, $X_{215j}$, $X_{215k}$, $X_{215l}$ | ||||||||||||
Curves that minimally cover $X_{215}$ and have infinitely many rational points. | $X_{215a}$, $X_{215b}$, $X_{215c}$, $X_{215d}$, $X_{215e}$, $X_{215f}$, $X_{215g}$, $X_{215h}$, $X_{215i}$, $X_{215j}$, $X_{215k}$, $X_{215l}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{215}) = \mathbb{Q}(f_{215}), f_{96} = \frac{2}{f_{215}^{2}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 246x - 1485$, with conductor $735$ | ||||||||||||
Generic density of odd order reductions | $25/224$ |