Curve name | $X_{217c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{217}$ | ||||||||||||
Curves that $X_{217c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{217c}$ | |||||||||||||
Curves that minimally cover $X_{217c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{16} + 13392t^{14} - 390096t^{12} + 3471552t^{10} - 11089440t^{8} + 13886208t^{6} - 6241536t^{4} + 857088t^{2} - 6912\] \[B(t) = 54t^{24} + 53136t^{22} - 4672080t^{20} + 116036928t^{18} - 1270274400t^{16} + 6784528896t^{14} - 18672256512t^{12} + 27138115584t^{10} - 20324390400t^{8} + 7426363392t^{6} - 1196052480t^{4} + 54411264t^{2} + 221184\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + x^2 + 386x + 1277$, with conductor $42$ | ||||||||||||
Generic density of odd order reductions | $53/896$ |