Curve name | $X_{217}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{75}$ | ||||||||||||
Curves that $X_{217}$ minimally covers | $X_{75}$, $X_{120}$, $X_{122}$ | ||||||||||||
Curves that minimally cover $X_{217}$ | $X_{466}$, $X_{467}$, $X_{477}$, $X_{481}$, $X_{217a}$, $X_{217b}$, $X_{217c}$, $X_{217d}$, $X_{217e}$, $X_{217f}$, $X_{217g}$, $X_{217h}$ | ||||||||||||
Curves that minimally cover $X_{217}$ and have infinitely many rational points. | $X_{217a}$, $X_{217b}$, $X_{217c}$, $X_{217d}$, $X_{217e}$, $X_{217f}$, $X_{217g}$, $X_{217h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{217}) = \mathbb{Q}(f_{217}), f_{75} = \frac{f_{217}}{f_{217}^{2} - 2}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 3474x - 31010$, with conductor $126$ | ||||||||||||
Generic density of odd order reductions | $193/1792$ |