The modular curve $X_{219a}$

Curve name $X_{219a}$
Index $96$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 1 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 8 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 5 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $12$ $X_{13h}$
$8$ $48$ $X_{85p}$
Meaning/Special name
Chosen covering $X_{219}$
Curves that $X_{219a}$ minimally covers
Curves that minimally cover $X_{219a}$
Curves that minimally cover $X_{219a}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -46899t^{24} + 4536t^{23} - 99252t^{22} - 712584t^{21} - 141318t^{20} - 1824984t^{19} - 4402404t^{18} - 489240t^{17} - 19534365t^{16} + 6711984t^{15} - 45292392t^{14} + 6093360t^{13} - 53065044t^{12} - 6093360t^{11} - 45292392t^{10} - 6711984t^{9} - 19534365t^{8} + 489240t^{7} - 4402404t^{6} + 1824984t^{5} - 141318t^{4} + 712584t^{3} - 99252t^{2} - 4536t - 46899\] \[B(t) = 3908898t^{36} - 554040t^{35} + 12195684t^{34} + 90945720t^{33} + 1694034t^{32} + 420634944t^{31} + 497906784t^{30} + 1595422656t^{29} + 1731744360t^{28} + 6348776544t^{27} + 9067830768t^{26} + 6801918624t^{25} + 48120356232t^{24} - 12379563072t^{23} + 126428068512t^{22} - 28502988480t^{21} + 206315835804t^{20} - 18027874512t^{19} + 240335075160t^{18} + 18027874512t^{17} + 206315835804t^{16} + 28502988480t^{15} + 126428068512t^{14} + 12379563072t^{13} + 48120356232t^{12} - 6801918624t^{11} + 9067830768t^{10} - 6348776544t^{9} + 1731744360t^{8} - 1595422656t^{7} + 497906784t^{6} - 420634944t^{5} + 1694034t^{4} - 90945720t^{3} + 12195684t^{2} + 554040t + 3908898\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 = x^3 - 579x + 5362$, with conductor $144$
Generic density of odd order reductions $299/2688$

Back to the 2-adic image homepage.