Curve name | $X_{219c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 5 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{219}$ | ||||||||||||
Curves that $X_{219c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{219c}$ | |||||||||||||
Curves that minimally cover $X_{219c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -5211t^{16} - 13392t^{15} - 16632t^{14} - 60048t^{13} - 102708t^{12} - 127440t^{11} - 289224t^{10} - 80784t^{9} - 506466t^{8} + 80784t^{7} - 289224t^{6} + 127440t^{5} - 102708t^{4} + 60048t^{3} - 16632t^{2} + 13392t - 5211\] \[B(t) = 144774t^{24} + 558576t^{23} + 1045224t^{22} + 3299184t^{21} + 7268940t^{20} + 14034384t^{19} + 23074632t^{18} + 42888528t^{17} + 57334554t^{16} + 63764064t^{15} + 127667664t^{14} + 32169312t^{13} + 159922728t^{12} - 32169312t^{11} + 127667664t^{10} - 63764064t^{9} + 57334554t^{8} - 42888528t^{7} + 23074632t^{6} - 14034384t^{5} + 7268940t^{4} - 3299184t^{3} + 1045224t^{2} - 558576t + 144774\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 64x + 220$, with conductor $24$ | ||||||||||||
Generic density of odd order reductions | $215/2688$ |