Curve name | $X_{219h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 8 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{219}$ | ||||||||||||
Curves that $X_{219h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{219h}$ | |||||||||||||
Curves that minimally cover $X_{219h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -20844t^{16} - 53568t^{15} - 66528t^{14} - 240192t^{13} - 410832t^{12} - 509760t^{11} - 1156896t^{10} - 323136t^{9} - 2025864t^{8} + 323136t^{7} - 1156896t^{6} + 509760t^{5} - 410832t^{4} + 240192t^{3} - 66528t^{2} + 53568t - 20844\] \[B(t) = 1158192t^{24} + 4468608t^{23} + 8361792t^{22} + 26393472t^{21} + 58151520t^{20} + 112275072t^{19} + 184597056t^{18} + 343108224t^{17} + 458676432t^{16} + 510112512t^{15} + 1021341312t^{14} + 257354496t^{13} + 1279381824t^{12} - 257354496t^{11} + 1021341312t^{10} - 510112512t^{9} + 458676432t^{8} - 343108224t^{7} + 184597056t^{6} - 112275072t^{5} + 58151520t^{4} - 26393472t^{3} + 8361792t^{2} - 4468608t + 1158192\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 257x + 1503$, with conductor $192$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |