Curve name | $X_{227h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{227}$ | ||||||||||||
Curves that $X_{227h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{227h}$ | |||||||||||||
Curves that minimally cover $X_{227h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -7077888t^{16} + 212336640t^{14} - 238878720t^{12} + 92897280t^{10} - 30246912t^{8} + 5806080t^{6} - 933120t^{4} + 51840t^{2} - 108\] \[B(t) = -7247757312t^{24} - 456608710656t^{22} + 1883510931456t^{20} - 1740820709376t^{18} + 942689746944t^{16} - 346023788544t^{14} + 103004504064t^{12} - 21626486784t^{10} + 3682381824t^{8} - 425005056t^{6} + 28740096t^{4} - 435456t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 419199x + 493911585$, with conductor $16320$ | ||||||||||||
Generic density of odd order reductions | $299/2688$ |