Curve name | $X_{227l}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{227}$ | ||||||||||||
Curves that $X_{227l}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{227l}$ | |||||||||||||
Curves that minimally cover $X_{227l}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -452984832t^{24} + 13589544960t^{22} - 15344861184t^{20} + 7644119040t^{18} - 3848601600t^{16} + 1167851520t^{14} - 361414656t^{12} + 72990720t^{10} - 15033600t^{8} + 1866240t^{6} - 234144t^{4} + 12960t^{2} - 27\] \[B(t) = -3710851743744t^{36} - 233783659855872t^{34} + 963661812203520t^{32} - 935134639423488t^{30} + 663430713311232t^{28} - 347022620098560t^{26} + 154536681406464t^{24} - 54793045278720t^{22} + 17665389232128t^{20} - 4587490639872t^{18} + 1104086827008t^{16} - 214035333120t^{14} + 37728681984t^{12} - 5295144960t^{10} + 632696832t^{8} - 55738368t^{6} + 3589920t^{4} - 54432t^{2} - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 30287104x + 303399169920$, with conductor $69360$ | ||||||||||||
Generic density of odd order reductions | $109/896$ |