| Curve name | $X_{229c}$ | 
| Index | $96$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 8 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{229}$ | 
| Curves that $X_{229c}$ minimally covers |  | 
| Curves that minimally cover $X_{229c}$ |  | 
| Curves that minimally cover $X_{229c}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -6912t^{16} - 27648t^{14} + 393984t^{12} + 836352t^{10} - 1136160t^{8} 
+ 209088t^{6} + 24624t^{4} - 432t^{2} - 27\]
\[B(t) = -221184t^{24} - 1327104t^{22} - 30191616t^{20} - 112250880t^{18} + 
147101184t^{16} + 488208384t^{14} - 515676672t^{12} + 122052096t^{10} + 
9193824t^{8} - 1753920t^{6} - 117936t^{4} - 1296t^{2} - 54\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 + 3616x + 142848$, with conductor $816$ | 
| Generic density of odd order reductions | $215/2688$ |