Curve name | $X_{229}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 5 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{86}$ | ||||||||||||
Curves that $X_{229}$ minimally covers | $X_{86}$, $X_{117}$, $X_{120}$ | ||||||||||||
Curves that minimally cover $X_{229}$ | $X_{467}$, $X_{476}$, $X_{229a}$, $X_{229b}$, $X_{229c}$, $X_{229d}$, $X_{229e}$, $X_{229f}$, $X_{229g}$, $X_{229h}$ | ||||||||||||
Curves that minimally cover $X_{229}$ and have infinitely many rational points. | $X_{229a}$, $X_{229b}$, $X_{229c}$, $X_{229d}$, $X_{229e}$, $X_{229f}$, $X_{229g}$, $X_{229h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{229}) = \mathbb{Q}(f_{229}), f_{86} = \frac{f_{229}^{2} - \frac{1}{2}}{f_{229}}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 2034x + 60264$, with conductor $306$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |