Curve name | $X_{230h}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{230}$ | ||||||||||||
Curves that $X_{230h}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{230h}$ | |||||||||||||
Curves that minimally cover $X_{230h}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -110592t^{24} + 1105920t^{22} - 4036608t^{20} + 6248448t^{18} - 3089664t^{16} - 967680t^{14} + 946944t^{12} - 241920t^{10} - 193104t^{8} + 97632t^{6} - 15768t^{4} + 1080t^{2} - 27\] \[B(t) = 14155776t^{36} - 212336640t^{34} + 1305870336t^{32} - 4190109696t^{30} + 7293763584t^{28} - 6168379392t^{26} + 959938560t^{24} + 1995964416t^{22} - 1225912320t^{20} + 302026752t^{18} - 306478080t^{16} + 124747776t^{14} + 14999040t^{12} - 24095232t^{10} + 7122816t^{8} - 1022976t^{6} + 79704t^{4} - 3240t^{2} + 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - 197x - 2367$, with conductor $294$ | ||||||||||||
Generic density of odd order reductions | $81/896$ |