| Curve name | $X_{234a}$ | 
| Index | $96$ | 
| Level | $16$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 1 \\ 8 & 3 \end{matrix}\right],
\left[ \begin{matrix} 5 & 5 \\ 8 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{234}$ | 
| Curves that $X_{234a}$ minimally covers |  | 
| Curves that minimally cover $X_{234a}$ |  | 
| Curves that minimally cover $X_{234a}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -31131t^{16} - 413856t^{15} - 2554848t^{14} - 9991296t^{13} - 
26526528t^{12} - 52738560t^{11} - 84865536t^{10} - 77580288t^{9} - 
169468416t^{8} + 310321152t^{7} - 1357848576t^{6} + 3375267840t^{5} - 
6790791168t^{4} + 10231087104t^{3} - 10464657408t^{2} + 6780616704t - 
2040201216\]
\[B(t) = -2114154t^{24} - 42158880t^{23} - 400357728t^{22} - 2437513344t^{21} - 
10602010944t^{20} - 35081786880t^{19} - 91919826432t^{18} - 197139142656t^{17} -
344702449152t^{16} - 507370881024t^{15} - 640018464768t^{14} - 
539658878976t^{13} - 1287773061120t^{12} + 2158635515904t^{11} - 
10240295436288t^{10} + 32471736385536t^{9} - 88243826982912t^{8} + 
201870482079744t^{7} - 376503609065472t^{6} + 574779996241920t^{5} - 
694813389225984t^{4} + 638979498049536t^{3} - 419805504995328t^{2} + 
176827159019520t - 35469618315264\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - x^2 - 384x - 2772$, with conductor $24$ | 
| Generic density of odd order reductions | $215/2688$ |