Curve name | $X_{234}$ | ||||||||||||
Index | $48$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | Yes | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 8 & 3 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{78}$ | ||||||||||||
Curves that $X_{234}$ minimally covers | $X_{78}$, $X_{120}$, $X_{121}$ | ||||||||||||
Curves that minimally cover $X_{234}$ | $X_{471}$, $X_{474}$, $X_{234a}$, $X_{234b}$, $X_{234c}$, $X_{234d}$, $X_{234e}$, $X_{234f}$, $X_{234g}$, $X_{234h}$ | ||||||||||||
Curves that minimally cover $X_{234}$ and have infinitely many rational points. | $X_{234a}$, $X_{234b}$, $X_{234c}$, $X_{234d}$, $X_{234e}$, $X_{234f}$, $X_{234g}$, $X_{234h}$ | ||||||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{234}) = \mathbb{Q}(f_{234}), f_{78} = \frac{2f_{234}^{2} + 8}{f_{234}^{2} + 4f_{234} - 4}\] | ||||||||||||
Info about rational points | None | ||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 9608x - 365712$, with conductor $600$ | ||||||||||||
Generic density of odd order reductions | $635/5376$ |