Curve name | $X_{234d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 8 & 5 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{234}$ | ||||||||||||
Curves that $X_{234d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{234d}$ | |||||||||||||
Curves that minimally cover $X_{234d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -124524t^{16} - 1655424t^{15} - 10219392t^{14} - 39965184t^{13} - 106106112t^{12} - 210954240t^{11} - 339462144t^{10} - 310321152t^{9} - 677873664t^{8} + 1241284608t^{7} - 5431394304t^{6} + 13501071360t^{5} - 27163164672t^{4} + 40924348416t^{3} - 41858629632t^{2} + 27122466816t - 8160804864\] \[B(t) = -16913232t^{24} - 337271040t^{23} - 3202861824t^{22} - 19500106752t^{21} - 84816087552t^{20} - 280654295040t^{19} - 735358611456t^{18} - 1577113141248t^{17} - 2757619593216t^{16} - 4058967048192t^{15} - 5120147718144t^{14} - 4317271031808t^{13} - 10302184488960t^{12} + 17269084127232t^{11} - 81922363490304t^{10} + 259773891084288t^{9} - 705950615863296t^{8} + 1614963856637952t^{7} - 3012028872523776t^{6} + 4598239969935360t^{5} - 5558507113807872t^{4} + 5111835984396288t^{3} - 3358444039962624t^{2} + 1414617272156160t - 283756946522112\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 1537x - 23713$, with conductor $192$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |