Curve name | $X_{235b}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{235}$ | |||||||||||||||
Curves that $X_{235b}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{235b}$ | ||||||||||||||||
Curves that minimally cover $X_{235b}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{30} + 2376t^{28} - 20196t^{26} + 82512t^{24} - 161676t^{22} + 115128t^{20} + 71388t^{18} - 178848t^{16} + 71388t^{14} + 115128t^{12} - 161676t^{10} + 82512t^{8} - 20196t^{6} + 2376t^{4} - 108t^{2}\] \[B(t) = 432t^{45} - 14256t^{43} + 199584t^{41} - 1540512t^{39} + 7121520t^{37} - 19936368t^{35} + 31653504t^{33} - 19460736t^{31} - 21319200t^{29} + 54966816t^{27} - 60264000t^{25} + 60264000t^{23} - 54966816t^{21} + 21319200t^{19} + 19460736t^{17} - 31653504t^{15} + 19936368t^{13} - 7121520t^{11} + 1540512t^{9} - 199584t^{7} + 14256t^{5} - 432t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 92601x + 8149693$, with conductor $4410$ | |||||||||||||||
Generic density of odd order reductions | $271/2688$ |