Curve name | $X_{235d}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 16 & 7 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{235}$ | |||||||||||||||
Curves that $X_{235d}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{235d}$ | ||||||||||||||||
Curves that minimally cover $X_{235d}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{30} + 594t^{28} - 5049t^{26} + 20628t^{24} - 40419t^{22} + 28782t^{20} + 17847t^{18} - 44712t^{16} + 17847t^{14} + 28782t^{12} - 40419t^{10} + 20628t^{8} - 5049t^{6} + 594t^{4} - 27t^{2}\] \[B(t) = 54t^{45} - 1782t^{43} + 24948t^{41} - 192564t^{39} + 890190t^{37} - 2492046t^{35} + 3956688t^{33} - 2432592t^{31} - 2664900t^{29} + 6870852t^{27} - 7533000t^{25} + 7533000t^{23} - 6870852t^{21} + 2664900t^{19} + 2432592t^{17} - 3956688t^{15} + 2492046t^{13} - 890190t^{11} + 192564t^{9} - 24948t^{7} + 1782t^{5} - 54t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 5926452x - 4184495728$, with conductor $141120$ | |||||||||||||||
Generic density of odd order reductions | $139/1344$ |