Curve name | $X_{235h}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{235}$ | |||||||||||||||
Curves that $X_{235h}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{235h}$ | ||||||||||||||||
Curves that minimally cover $X_{235h}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{22} + 1080t^{20} - 3132t^{18} + 2592t^{16} + 1512t^{14} - 3888t^{12} + 1512t^{10} + 2592t^{8} - 3132t^{6} + 1080t^{4} - 108t^{2}\] \[B(t) = 432t^{33} - 6480t^{31} + 34992t^{29} - 82512t^{27} + 71280t^{25} + 50544t^{23} - 142992t^{21} + 112752t^{19} - 112752t^{17} + 142992t^{15} - 50544t^{13} - 71280t^{11} + 82512t^{9} - 34992t^{7} + 6480t^{5} - 432t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 1890x - 24300$, with conductor $630$ | |||||||||||||||
Generic density of odd order reductions | $271/2688$ |