| Curve name | 
$X_{235i}$ | 
| Index | 
$96$ | 
| Level | 
$16$ | 
| Genus | 
$0$ | 
| Does the subgroup contain $-I$? | 
No | 
| Generating matrices | 
$
\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 0 & 9 \end{matrix}\right]$ | 
| Images in lower levels | 
 | 
| Meaning/Special name | 
 | 
| Chosen covering | 
$X_{235}$ | 
| Curves that $X_{235i}$ minimally covers  | 
 | 
| Curves that minimally cover $X_{235i}$ | 
 | 
| Curves that minimally cover $X_{235i}$ and have infinitely many rational 
points. | 
 | 
| Model | 
$\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{16} + 216t^{14} - 324t^{12} - 216t^{10} + 270t^{8} - 216t^{6} - 
324t^{4} + 216t^{2} - 27\]
\[B(t) = -54t^{24} + 648t^{22} - 2268t^{20} + 1512t^{18} + 3078t^{16} - 
3888t^{14} - 1512t^{12} - 3888t^{10} + 3078t^{8} + 1512t^{6} - 2268t^{4} + 
648t^{2} - 54\]
 | 
| Info about rational points | 
| Comments on finding rational points | 
None | 
| Elliptic curve whose $2$-adic image is the subgroup | 
$y^2 = x^3 - x^2 + 3360x - 57600$, with conductor $1680$ | 
| Generic density of odd order reductions | 
$19/336$ |