The modular curve $X_{235o}$

Curve name $X_{235o}$
Index $96$
Level $16$
Genus $0$
Does the subgroup contain $-I$? No
Generating matrices $ \left[ \begin{matrix} 1 & 0 \\ 0 & 15 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 15 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 15 \end{matrix}\right]$
Images in lower levels
LevelIndex of imageCorresponding curve
$2$ $3$ $X_{6}$
$4$ $6$ $X_{13}$
$8$ $24$ $X_{102}$
Meaning/Special name
Chosen covering $X_{235}$
Curves that $X_{235o}$ minimally covers
Curves that minimally cover $X_{235o}$
Curves that minimally cover $X_{235o}$ and have infinitely many rational points.
Model $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{28} + 432t^{27} + 648t^{26} - 3888t^{25} + 540t^{24} + 7776t^{23} - 3888t^{22} + 6048t^{21} - 2700t^{20} - 24624t^{19} + 6264t^{18} + 7344t^{17} + 2268t^{16} + 25920t^{15} - 6048t^{14} - 25920t^{13} + 2268t^{12} - 7344t^{11} + 6264t^{10} + 24624t^{9} - 2700t^{8} - 6048t^{7} - 3888t^{6} - 7776t^{5} + 540t^{4} + 3888t^{3} + 648t^{2} - 432t - 108\] \[B(t) = -432t^{42} + 2592t^{41} + 1296t^{40} - 32832t^{39} + 33696t^{38} + 124416t^{37} - 201312t^{36} - 77760t^{35} + 193104t^{34} - 379296t^{33} + 695952t^{32} + 642816t^{31} - 1302912t^{30} + 165888t^{29} - 777600t^{28} - 808704t^{27} + 2304288t^{26} + 295488t^{25} + 676512t^{24} + 51840t^{23} - 1622592t^{22} - 1622592t^{20} - 51840t^{19} + 676512t^{18} - 295488t^{17} + 2304288t^{16} + 808704t^{15} - 777600t^{14} - 165888t^{13} - 1302912t^{12} - 642816t^{11} + 695952t^{10} + 379296t^{9} + 193104t^{8} + 77760t^{7} - 201312t^{6} - 124416t^{5} + 33696t^{4} + 32832t^{3} + 1296t^{2} - 2592t - 432\]
Info about rational points
Comments on finding rational points None
Elliptic curve whose $2$-adic image is the subgroup $y^2 + xy + y = x^3 - 18460776x - 30522871802$, with conductor $7350$
Generic density of odd order reductions $1091/10752$

Back to the 2-adic image homepage.