Curve name | X235p | |||||||||||||||
Index | 96 | |||||||||||||||
Level | 32 | |||||||||||||||
Genus | 0 | |||||||||||||||
Does the subgroup contain −I? | No | |||||||||||||||
Generating matrices | [50161],[10015],[7007],[30015],[77015] | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | X235 | |||||||||||||||
Curves that X235p minimally covers | ||||||||||||||||
Curves that minimally cover X235p | ||||||||||||||||
Curves that minimally cover X235p and have infinitely many rational points. | ||||||||||||||||
Model | P1, a universal elliptic curve over an appropriate base is given by y2=x3+A(t)x+B(t), where A(t)=−108t26−432t25+432t24+3024t23+1512t22−1296t21−1296t20−11664t19−6804t18+2592t17−6048t16+9504t15−3024t14−9504t13−6048t12−2592t11−6804t10+11664t9−1296t8+1296t7+1512t6−3024t5+432t4+432t3−108t2 B(t)=432t39+2592t38−25056t36−34992t35+41472t34+96768t33+124416t32+202176t31−155520t30−414720t29−155520t28−451008t27+290304t26+870912t25+373248t24+1246752t23+388800t22+388800t20−1246752t19+373248t18−870912t17+290304t16+451008t15−155520t14+414720t13−155520t12−202176t11+124416t10−96768t9+41472t8+34992t7−25056t6+2592t4−432t3 | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose 2-adic image is the subgroup | y2+xy=x3+x2+5250x+112500, with conductor 1050 | |||||||||||||||
Generic density of odd order reductions | 1091/10752 |