Curve name | $X_{235q}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 0 \\ 0 & 15 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 15 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{235}$ | ||||||||||||
Curves that $X_{235q}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{235q}$ | |||||||||||||
Curves that minimally cover $X_{235q}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{28} + 108t^{27} + 162t^{26} - 972t^{25} + 135t^{24} + 1944t^{23} - 972t^{22} + 1512t^{21} - 675t^{20} - 6156t^{19} + 1566t^{18} + 1836t^{17} + 567t^{16} + 6480t^{15} - 1512t^{14} - 6480t^{13} + 567t^{12} - 1836t^{11} + 1566t^{10} + 6156t^{9} - 675t^{8} - 1512t^{7} - 972t^{6} - 1944t^{5} + 135t^{4} + 972t^{3} + 162t^{2} - 108t - 27\] \[B(t) = -54t^{42} + 324t^{41} + 162t^{40} - 4104t^{39} + 4212t^{38} + 15552t^{37} - 25164t^{36} - 9720t^{35} + 24138t^{34} - 47412t^{33} + 86994t^{32} + 80352t^{31} - 162864t^{30} + 20736t^{29} - 97200t^{28} - 101088t^{27} + 288036t^{26} + 36936t^{25} + 84564t^{24} + 6480t^{23} - 202824t^{22} - 202824t^{20} - 6480t^{19} + 84564t^{18} - 36936t^{17} + 288036t^{16} + 101088t^{15} - 97200t^{14} - 20736t^{13} - 162864t^{12} - 80352t^{11} + 86994t^{10} + 47412t^{9} + 24138t^{8} + 9720t^{7} - 25164t^{6} - 15552t^{5} + 4212t^{4} + 4104t^{3} + 162t^{2} - 324t - 54\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + 755925x + 190620250$, with conductor $25200$ | ||||||||||||
Generic density of odd order reductions | $139/1344$ |