Curve name | $X_{235s}$ | |||||||||||||||
Index | $96$ | |||||||||||||||
Level | $32$ | |||||||||||||||
Genus | $0$ | |||||||||||||||
Does the subgroup contain $-I$? | No | |||||||||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 16 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 15 \end{matrix}\right], \left[ \begin{matrix} 7 & 7 \\ 0 & 15 \end{matrix}\right]$ | |||||||||||||||
Images in lower levels |
|
|||||||||||||||
Meaning/Special name | ||||||||||||||||
Chosen covering | $X_{235}$ | |||||||||||||||
Curves that $X_{235s}$ minimally covers | ||||||||||||||||
Curves that minimally cover $X_{235s}$ | ||||||||||||||||
Curves that minimally cover $X_{235s}$ and have infinitely many rational points. | ||||||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{26} + 432t^{25} + 432t^{24} - 3024t^{23} + 1512t^{22} + 1296t^{21} - 1296t^{20} + 11664t^{19} - 6804t^{18} - 2592t^{17} - 6048t^{16} - 9504t^{15} - 3024t^{14} + 9504t^{13} - 6048t^{12} + 2592t^{11} - 6804t^{10} - 11664t^{9} - 1296t^{8} - 1296t^{7} + 1512t^{6} + 3024t^{5} + 432t^{4} - 432t^{3} - 108t^{2}\] \[B(t) = 432t^{39} - 2592t^{38} + 25056t^{36} - 34992t^{35} - 41472t^{34} + 96768t^{33} - 124416t^{32} + 202176t^{31} + 155520t^{30} - 414720t^{29} + 155520t^{28} - 451008t^{27} - 290304t^{26} + 870912t^{25} - 373248t^{24} + 1246752t^{23} - 388800t^{22} - 388800t^{20} - 1246752t^{19} - 373248t^{18} - 870912t^{17} - 290304t^{16} + 451008t^{15} + 155520t^{14} + 414720t^{13} + 155520t^{12} - 202176t^{11} - 124416t^{10} - 96768t^{9} - 41472t^{8} + 34992t^{7} + 25056t^{6} - 2592t^{4} - 432t^{3}\] | |||||||||||||||
Info about rational points | ||||||||||||||||
Comments on finding rational points | None | |||||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 + 257224x - 37815802$, with conductor $7350$ | |||||||||||||||
Generic density of odd order reductions | $1091/10752$ |