Curve name | $X_{236c}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 8 & 7 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{236}$ | ||||||||||||
Curves that $X_{236c}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{236c}$ | |||||||||||||
Curves that minimally cover $X_{236c}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27648t^{16} + 110592t^{14} + 1575936t^{12} - 3345408t^{10} - 4544640t^{8} - 836352t^{6} + 98496t^{4} + 1728t^{2} - 108\] \[B(t) = 1769472t^{24} - 10616832t^{22} + 241532928t^{20} - 898007040t^{18} - 1176809472t^{16} + 3905667072t^{14} + 4125413376t^{12} + 976416768t^{10} - 73550592t^{8} - 14031360t^{6} + 943488t^{4} - 10368t^{2} + 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 86017x + 9681503$, with conductor $1344$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |