Curve name | $X_{236d}$ | ||||||||||||
Index | $96$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{236}$ | ||||||||||||
Curves that $X_{236d}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{236d}$ | |||||||||||||
Curves that minimally cover $X_{236d}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -442368t^{24} + 4423680t^{22} + 10395648t^{20} - 187342848t^{18} + 485305344t^{16} - 123310080t^{14} - 527053824t^{12} - 30827520t^{10} + 30331584t^{8} - 2927232t^{6} + 40608t^{4} + 4320t^{2} - 108\] \[B(t) = -113246208t^{36} + 1698693120t^{34} - 24715984896t^{32} + 219018166272t^{30} - 893087907840t^{28} + 1158763511808t^{26} + 2157644611584t^{24} - 6587744256000t^{22} + 1604147576832t^{20} + 4765666738176t^{18} + 401036894208t^{16} - 411734016000t^{14} + 33713197056t^{12} + 4526419968t^{10} - 872156160t^{8} + 53471232t^{6} - 1508544t^{4} + 25920t^{2} - 432\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 + x^2 - 4214849x + 3329185215$, with conductor $9408$ | ||||||||||||
Generic density of odd order reductions | $271/2688$ |