| Curve name | $X_{289}$ | 
| Index | $48$ | 
| Level | $16$ | 
| Genus | $1$ | 
| Does the subgroup contain $-I$? | Yes | 
| Generating matrices | $
\left[ \begin{matrix} 9 & 2 \\ 2 & 7 \end{matrix}\right],
\left[ \begin{matrix} 1 & 0 \\ 8 & 1 \end{matrix}\right],
\left[ \begin{matrix} 1 & 3 \\ 2 & 7 \end{matrix}\right],
\left[ \begin{matrix} 9 & 9 \\ 2 & 7 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{91}$ | 
| Curves that $X_{289}$ minimally covers | $X_{91}$, $X_{124}$, $X_{166}$ | 
| Curves that minimally cover $X_{289}$ | $X_{582}$, $X_{585}$ | 
| Curves that minimally cover $X_{289}$ and have infinitely many rational 
points. |  | 
| Model | \[y^2 = x^3 + x^2 - 13x - 21\] | 
| Info about rational points | $X_{289}(\mathbb{Q}) \cong \mathbb{Z}/2\mathbb{Z} \times\mathbb{Z}$ | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 + 173490x + 156628973$, with conductor $4046$ | 
| Generic density of odd order reductions | $12833/57344$ |