Curve name | $X_{30}$ | |||||||||
Index | $12$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | Yes | |||||||||
Generating matrices | $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 3 & 3 \\ 2 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{12}$ | |||||||||
Curves that $X_{30}$ minimally covers | $X_{12}$ | |||||||||
Curves that minimally cover $X_{30}$ | $X_{72}$, $X_{88}$, $X_{89}$, $X_{93}$, $X_{103}$, $X_{104}$, $X_{126}$, $X_{142}$, $X_{162}$, $X_{163}$, $X_{164}$, $X_{167}$, $X_{172}$, $X_{174}$ | |||||||||
Curves that minimally cover $X_{30}$ and have infinitely many rational points. | $X_{89}$, $X_{93}$, $X_{103}$, $X_{104}$, $X_{167}$ | |||||||||
Model | \[\mathbb{P}^{1}, \mathbb{Q}(X_{30}) = \mathbb{Q}(f_{30}), f_{12} = -f_{30}^{2}\] | |||||||||
Info about rational points | None | |||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 + x^2 - 7325x + 219000$, with conductor $63075$ | |||||||||
Generic density of odd order reductions | $419/1344$ |