Curve name  $X_{93}$  
Index  $24$  
Level  $8$  
Genus  $0$  
Does the subgroup contain $I$?  Yes  
Generating matrices  $ \left[ \begin{matrix} 3 & 6 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 1 & 1 \\ 6 & 3 \end{matrix}\right]$  
Images in lower levels 


Meaning/Special name  
Chosen covering  $X_{30}$  
Curves that $X_{93}$ minimally covers  $X_{30}$  
Curves that minimally cover $X_{93}$  $X_{244}$, $X_{265}$, $X_{293}$, $X_{295}$, $X_{296}$, $X_{298}$  
Curves that minimally cover $X_{93}$ and have infinitely many rational points.  $X_{295}$  
Model  \[\mathbb{P}^{1}, \mathbb{Q}(X_{93}) = \mathbb{Q}(f_{93}), f_{30} = \frac{f_{93}^{2}  2}{f_{93} + 1}\]  
Info about rational points  None  
Comments on finding rational points  None  
Elliptic curve whose $2$adic image is the subgroup  $y^2 = x^3 + x^2  355x + 2354$, with conductor $4056$  
Generic density of odd order reductions  $137/448$ 