Curve name | $X_{33b}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 5 & 0 \\ 0 & 3 \end{matrix}\right], \left[ \begin{matrix} 5 & 5 \\ 4 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 4 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{33}$ | |||||||||
Curves that $X_{33b}$ minimally covers | ||||||||||
Curves that minimally cover $X_{33b}$ | ||||||||||
Curves that minimally cover $X_{33b}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -108t^{8} - 2592t^{6} - 21168t^{4} - 62208t^{2} - 27648\] \[B(t) = -432t^{12} - 15552t^{10} - 220320t^{8} - 1524096t^{6} - 5059584t^{4} - 5971968t^{2} + 1769472\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 = x^3 - 39x - 92$, with conductor $576$ | |||||||||
Generic density of odd order reductions | $289/1792$ |