| Curve name | $X_{36a}$ | 
| Index | $24$ | 
| Level | $8$ | 
| Genus | $0$ | 
| Does the subgroup contain $-I$? | No | 
| Generating matrices | $
\left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right],
\left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | 
| Images in lower levels |  | 
| Meaning/Special name |  | 
| Chosen covering | $X_{36}$ | 
| Curves that $X_{36a}$ minimally covers |  | 
| Curves that minimally cover $X_{36a}$ |  | 
| Curves that minimally cover $X_{36a}$ and have infinitely many rational 
points. |  | 
| Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is 
given by
\[y^2 = x^3 + A(t)x + B(t), \text{ where}\]
\[A(t) = -27t^{8} + 216t^{7} - 3456t^{5} + 6480t^{4} + 3456t^{3} - 6912t^{2}\]
\[B(t) = 54t^{12} - 648t^{11} + 1296t^{10} + 12096t^{9} - 55728t^{8} + 5184t^{7}
+ 314496t^{6} - 456192t^{5} + 165888t^{4} - 221184t^{3}\] | 
| Info about rational points | 
| Comments on finding rational points | None | 
| Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 1134x - 10535$, with conductor $693$ | 
| Generic density of odd order reductions | $19/168$ |