Curve name | $X_{36a}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 1 & 1 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 3 & 0 \\ 0 & 3 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{36a}$ minimally covers | ||||||||||
Curves that minimally cover $X_{36a}$ | ||||||||||
Curves that minimally cover $X_{36a}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} + 216t^{7} - 3456t^{5} + 6480t^{4} + 3456t^{3} - 6912t^{2}\] \[B(t) = 54t^{12} - 648t^{11} + 1296t^{10} + 12096t^{9} - 55728t^{8} + 5184t^{7} + 314496t^{6} - 456192t^{5} + 165888t^{4} - 221184t^{3}\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 + 1134x - 10535$, with conductor $693$ | |||||||||
Generic density of odd order reductions | $19/168$ |