Curve name | $X_{36g}$ | ||||||||||||
Index | $24$ | ||||||||||||
Level | $16$ | ||||||||||||
Genus | $0$ | ||||||||||||
Does the subgroup contain $-I$? | No | ||||||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 8 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 1 & 0 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | ||||||||||||
Images in lower levels |
|
||||||||||||
Meaning/Special name | |||||||||||||
Chosen covering | $X_{36}$ | ||||||||||||
Curves that $X_{36g}$ minimally covers | |||||||||||||
Curves that minimally cover $X_{36g}$ | |||||||||||||
Curves that minimally cover $X_{36g}$ and have infinitely many rational points. | |||||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{10} + 1296t^{8} - 21168t^{6} + 124416t^{4} - 110592t^{2}\] \[B(t) = 54t^{15} - 3888t^{13} + 110160t^{11} - 1524096t^{9} + 10119168t^{7} - 23887872t^{5} - 14155776t^{3}\] | ||||||||||||
Info about rational points | |||||||||||||
Comments on finding rational points | None | ||||||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy + y = x^3 - x^2 - 1815386x - 940703200$, with conductor $53361$ | ||||||||||||
Generic density of odd order reductions | $83/672$ |