Curve name | $X_{36h}$ | |||||||||
Index | $24$ | |||||||||
Level | $8$ | |||||||||
Genus | $0$ | |||||||||
Does the subgroup contain $-I$? | No | |||||||||
Generating matrices | $ \left[ \begin{matrix} 7 & 7 \\ 0 & 7 \end{matrix}\right], \left[ \begin{matrix} 7 & 0 \\ 0 & 1 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 5 \end{matrix}\right], \left[ \begin{matrix} 5 & 0 \\ 0 & 1 \end{matrix}\right]$ | |||||||||
Images in lower levels |
|
|||||||||
Meaning/Special name | ||||||||||
Chosen covering | $X_{36}$ | |||||||||
Curves that $X_{36h}$ minimally covers | ||||||||||
Curves that minimally cover $X_{36h}$ | ||||||||||
Curves that minimally cover $X_{36h}$ and have infinitely many rational points. | ||||||||||
Model | $\mathbb{P}^{1}$, a universal elliptic curve over an appropriate base is given by \[y^2 = x^3 + A(t)x + B(t), \text{ where}\] \[A(t) = -27t^{8} + 1296t^{6} - 21168t^{4} + 124416t^{2} - 110592\] \[B(t) = 54t^{12} - 3888t^{10} + 110160t^{8} - 1524096t^{6} + 10119168t^{4} - 23887872t^{2} - 14155776\] | |||||||||
Info about rational points | ||||||||||
Comments on finding rational points | None | |||||||||
Elliptic curve whose $2$-adic image is the subgroup | $y^2 + xy = x^3 - x^2 - 27081x + 1667790$, with conductor $1287$ | |||||||||
Generic density of odd order reductions | $19/168$ |